Bahan ajar Matematika kelas 9
1.2 Perkalian pada Perpangkatan
Hasil kali dari perpangkatan dengan basis yang sama
Sifat perkalian dalam perpangkatan: am × an = am + n
Contoh: 32 × 33 = 32 + 3 = 35
Hasil pemangkatan dari perpangkatan dengan basis yang sama
Sifat pemangkatan pada perpangkatan: (am)n = am∙n = amn
Contoh: (32)3 = 32∙3 = 36
Hasil perpangkatan dari suatu perkalian bilangan
Sifat perpangkatan dari perkalian bilangan: (a∙b)m = ambm
Contoh: (2∙3)3 = 23∙33
1.3 Pembagian pada Perpangkatan
Hasil bagi dari perpangkatan dengan basis yang sama

Perpangkatan pada pecahan

1.4 Pangkat Nol, Pangkat Negatif, dan Bentuk Akar
PANGKAT NOL
Untuk setiap a bilangan real tak nol, a0 bernilai 1
Secara aljabar dapat ditulis kembali sebagai a0 = 1 untuk a bilangan real dan a ≠ 0
PANGKAT NEGATIF
Untuk setiap a bilangan real tak nol dan n bilangan bulat, berlaku:

untuk a ≠ 0, a bilangan real dan n bilangan bulat
BENTUK AKAR

1.5 Notasi Ilmiah (Bentuk Baku)
Notasi ilmiah (bentuk baku) dari suatu bilangan positif dituliskan dalam bentuk a × 10n
dengan … 1 < a < 10 … dan n adalah bilangan bulat.
Misalkan notasi ilmiah untuk 2.300 adalah

Materi Matematika Kelas 9 Kurikulum 2013 Revisi 2018
Bab II Persamaan dan Fungsi Kuadrat
2.1 Persamaan Kuadrat
Persamaan kuadrat satu variabel adalah suatu persamaan yang pangkat tertingginya dua. Secara umum, bentuk persamaan kuadrat adalah ax2 + bx + c = 0 dengan a ≠ 0, a, b, c ∈ R.
Konstanta a, b, c pada persamaan ini disebut sebagai koefisien.
Beberapa contoh persamaan kuadrat yaitu: 3x2 – 7x + 5 = 0, x2 – x + 12 = 0, x2 – 9 = 0, 2x(x – 7) = 0 dan lainnya.
2.2 Grafik Fungsi Kuadrat
Fungsi kuadrat merupakan fungsi yang berbentuk y = ax2 + bx + c, dengan a ≠ 0.
Grafik dari fungsi kuadrat menyerupai parabloa, sehingga dapat dikatakan juga sebagai fungsi parabola.
Nilai a pada fungsi y = ax2 + bx + c akan mempengaruhi bentuk grafiknya. Jika a positif maka grafiknya akan terbuka ke atas.
Sebaliknya jika a negatif maka grafiknya akan terbuka ke bawah. Jika nilai a semakin besar maka grafiknya menjadi lebih “kurus”.
2.3 Sumbu Simetri dan Nilai Optimum

Fungsi kuadrat f(x) = ax2 + bx + c mempunyai sumbu simetri

Dengan nilai optimumnya adalah
Langkah-langkah mensketsa grafik fungsi kuadrat:
Langkah 1. Menentukan bentuk parabola (terbuka ke atas atau ke bawah).
Langkah 2. Menentukan perpotongan grafik terhadap sumbu-x; yaitu, koordinat titik potongnya adalah (x1, 0) yang memenuhi persamaan f(x1) = 0
Langkah 3. Menentukan perpotongan grafik terhadap sumbu-y; yaitu, koordinat titik potongnya adalah (0, y1) dengan y1 didapatkan berdasarkan persamaan y1 = f(0)
Langkah 4. Menentukan sumbu simetri dan nilai optimum dari grafik fungsi.
Langkah 5. Mensketsa grafik fungsi kuadrat berdasarkan langkah (1), (2), (3), dan (4).